Diferencia entre revisiones de «grupo de Lorentz»
| (No se muestran 3 ediciones intermedias del mismo usuario) | |||
| Línea 1: | Línea 1: | ||
=grupo de Lorentz= | =grupo de Lorentz= | ||
| − | (''<span style="color: green;">Lorentz group</span>'') | + | (''<span style="color: green;">Lorentz group</span>'') ''Fís[[Category:Física]].'' Grupo de Lie de todas las transformaciones de Lorentz del espacio de Minkowski. Está compuesto por el grupo de matrices reales \((\Lambda _v^\mu )\), 4 × 4, que dejan invariante la forma cuadrática \( x \cdot x: = {x^\mu }{\eta _{\mu \nu}}{\kern 1pt} {x^\nu}\), donde \(\left( {{\eta _{\mu \nu }}} \right): = {\mathop{\rm Diag}\nolimits} \,({\small {1, - 1, - 1, - 1}})\) es el tensor métrico de Minkowski, y los índices recorren los valores 0, 1, 2, 3; es decir, \((\Lambda x) \cdot (\Lambda x): = x \cdot x\), o equivalentemente, \(\Lambda \eta {\kern 0.5pt} {\Lambda ^{\rm{t}}} = \eta \). El subgrupo dado por la componente conexa que contiene al elemento neutro de este grupo de Lie consta de las matrices del mismo con determinante +1 y componente \(\Lambda _{\small 0}^{\small 0} \small > 0\), y se conoce como ''grupo de Lorentz ortocrono propio''; sus elementos representan las transformaciones de coordenadas entre dos sistemas inerciales de origen común, igual orientación de ejes espaciales y relojes que avanzan en el mismo sentido. Sinón.: [[grupo homogéneo de Lorentz]]. V. [[grupo de Poincaré]]. |
Revisión actual del 16:16 25 sep 2025
grupo de Lorentz
(Lorentz group) Fís. Grupo de Lie de todas las transformaciones de Lorentz del espacio de Minkowski. Está compuesto por el grupo de matrices reales \((\Lambda _v^\mu )\), 4 × 4, que dejan invariante la forma cuadrática \( x \cdot x: = {x^\mu }{\eta _{\mu \nu}}{\kern 1pt} {x^\nu}\), donde \(\left( {{\eta _{\mu \nu }}} \right): = {\mathop{\rm Diag}\nolimits} \,({\small {1, - 1, - 1, - 1}})\) es el tensor métrico de Minkowski, y los índices recorren los valores 0, 1, 2, 3; es decir, \((\Lambda x) \cdot (\Lambda x): = x \cdot x\), o equivalentemente, \(\Lambda \eta {\kern 0.5pt} {\Lambda ^{\rm{t}}} = \eta \). El subgrupo dado por la componente conexa que contiene al elemento neutro de este grupo de Lie consta de las matrices del mismo con determinante +1 y componente \(\Lambda _{\small 0}^{\small 0} \small > 0\), y se conoce como grupo de Lorentz ortocrono propio; sus elementos representan las transformaciones de coordenadas entre dos sistemas inerciales de origen común, igual orientación de ejes espaciales y relojes que avanzan en el mismo sentido. Sinón.: grupo homogéneo de Lorentz. V. grupo de Poincaré.