Diferencia entre revisiones de «teorema circuital de Ampère»

De vctrac
Saltar a: navegación, buscar
 
(No se muestra una edición intermedia de otro usuario)
Línea 1: Línea 1:
 
=teorema circuital de Ampère=
 
=teorema circuital de Ampère=
(''<span style="color: green;">Ampère’s circuital theorem</span>'') <br>'''1.''' ''Fís[[Category:Física]].'' Teorema según el cual para campos eléctricos y magnéticos estáticos, en el vacío, y por tanto bajo la ecuación \(nabla \times {\bf{B}} = {\mu _0}{\bf{J}}\), la circulación del vector inducción magnética \({\bf{B}}\), a lo largo de una trayectoria cerrada, es proporcional a la intensidad de la corriente total que atraviesa cualquier superficie limitada por dicha trayectoria: , con los convenios habituales de orientación exigidos por el teorema de Stokes. <br>'''2.''' ''Fís[[Category:Física]].'' Teorema según el cual, para campos eléctricos y magnéticos estáticos, en un medio material también estático, y por tanto bajo la ecuación \(\nabla \times {\bf{H}} = {{\bf{J}}_{{\rm{libre}}}}\), la circulación del vector intensidad magnética \({\bf{H}}\) a lo largo de la trayectoria cerrada y el flujo de corriente eléctrica libre que atraviesa cualquier superficie limitada por dicha trayectoria son iguales: , con los convenios habituales de orientación exigidos por el teorema de Stokes. Sinón.: [[ley de Ampère]]. V. [[campo magnético]].
+
(''<span style="color: green;">Ampère’s circuital theorem</span>'') <br>'''1.''' ''Fís[[Category:Física]].'' Teorema según el cual para campos eléctricos y magnéticos estáticos, en el vacío, y por tanto bajo la ecuación \(\nabla \times {\boldsymbol{B}} = {\mu _0}{\boldsymbol{J}}\), la circulación del vector inducción magnética \({\boldsymbol{B}}\), a lo largo de una trayectoria cerrada, es proporcional a la intensidad de la corriente total que atraviesa cualquier superficie limitada por dicha trayectoria: \( \displaystyle\oint \boldsymbol{B}  \cdot {\rm{d}}l = {\mu _0} \iint {\boldsymbol{J}} \cdot {\rm{d}}s \), con los convenios habituales de orientación exigidos por el teorema de Stokes. <br>'''2.''' ''Fís[[Category:Física]].'' Teorema según el cual, para campos eléctricos y magnéticos estáticos, en un medio material también estático, y por tanto bajo la ecuación \(\nabla \times {\boldsymbol{H}} = {{\boldsymbol{J}}_{{\rm{libre}}}}\), la circulación del vector intensidad magnética \({\boldsymbol{H}}\) a lo largo de la trayectoria cerrada y el flujo de corriente eléctrica libre que atraviesa cualquier superficie limitada por dicha trayectoria son iguales: \( \displaystyle\oint \boldsymbol{H}  \cdot {\rm{d}}l = \iint {{\boldsymbol{J}}_{{\rm{libre}}}} \cdot {\rm{d}}s \), con los convenios habituales de orientación exigidos por el teorema de Stokes.<br>• Sinón.: [[ley de Ampère]]. V. [[campo magnético]].

Revisión actual del 17:45 20 oct 2020

teorema circuital de Ampère

(Ampère’s circuital theorem)
1. Fís. Teorema según el cual para campos eléctricos y magnéticos estáticos, en el vacío, y por tanto bajo la ecuación \(\nabla \times {\boldsymbol{B}} = {\mu _0}{\boldsymbol{J}}\), la circulación del vector inducción magnética \({\boldsymbol{B}}\), a lo largo de una trayectoria cerrada, es proporcional a la intensidad de la corriente total que atraviesa cualquier superficie limitada por dicha trayectoria: \( \displaystyle\oint \boldsymbol{B} \cdot {\rm{d}}l = {\mu _0} \iint {\boldsymbol{J}} \cdot {\rm{d}}s \), con los convenios habituales de orientación exigidos por el teorema de Stokes.
2. Fís. Teorema según el cual, para campos eléctricos y magnéticos estáticos, en un medio material también estático, y por tanto bajo la ecuación \(\nabla \times {\boldsymbol{H}} = {{\boldsymbol{J}}_{{\rm{libre}}}}\), la circulación del vector intensidad magnética \({\boldsymbol{H}}\) a lo largo de la trayectoria cerrada y el flujo de corriente eléctrica libre que atraviesa cualquier superficie limitada por dicha trayectoria son iguales: \( \displaystyle\oint \boldsymbol{H} \cdot {\rm{d}}l = \iint {{\boldsymbol{J}}_{{\rm{libre}}}} \cdot {\rm{d}}s \), con los convenios habituales de orientación exigidos por el teorema de Stokes.
• Sinón.: ley de Ampère. V. campo magnético.