Diferencia entre revisiones de «regla de cuantización WBK»
De vctrac
(Imported from text file) |
|||
| Línea 1: | Línea 1: | ||
=regla de cuantización WBK= | =regla de cuantización WBK= | ||
| − | (''<span style="color: green;">WBK'' ''quantization rule</span>'') ''Fís[[Category:Física]].'' Regla de cuantización (int_{{kern 1pt} {x_ - }(E)}^{{kern 1pt} {x_ + }(E)} {{rm{d}} | + | (''<span style="color: green;">WBK'' ''quantization rule</span>'') ''Fís[[Category:Física]].'' Regla de cuantización \(\int_{{\kern 1pt} {x_ - }(E)}^{{\kern 1pt} {x_ + }(E)} {{\rm{d}}x\sqrt {{\kern 1pt} 2m\left( {E - V(x)} \right)} = } \left( {n + \frac{1}{2}} \right)\pi \hbar \), \(n = 0,\;1,\;...\), que selecciona, en la aproximación semiclásica o WBK (Wentzel-Brillouin-Kramers), las energías propias de una partícula cuántica de masa ''m'' moviéndose sobre la recta real bajo la acción de un potencial \(V(x)\); en esa fórmula, \({\kern 1pt} {x_ - }(E) < {x_ + }(E)\) son los puntos de retroceso, soluciones de la ecuación \(V(x) = E\), y supuestamente únicos. Var.: [[regla de cuantificación WBK]]. |
Revisión del 13:26 5 feb 2020
regla de cuantización WBK
(WBK quantization rule) Fís. Regla de cuantización \(\int_{{\kern 1pt} {x_ - }(E)}^{{\kern 1pt} {x_ + }(E)} {{\rm{d}}x\sqrt {{\kern 1pt} 2m\left( {E - V(x)} \right)} = } \left( {n + \frac{1}{2}} \right)\pi \hbar \), \(n = 0,\;1,\;...\), que selecciona, en la aproximación semiclásica o WBK (Wentzel-Brillouin-Kramers), las energías propias de una partícula cuántica de masa m moviéndose sobre la recta real bajo la acción de un potencial \(V(x)\); en esa fórmula, \({\kern 1pt} {x_ - }(E) < {x_ + }(E)\) son los puntos de retroceso, soluciones de la ecuación \(V(x) = E\), y supuestamente únicos. Var.: regla de cuantificación WBK.